Connuential/Prophetary disclosed under CDA between Akzo Nobel Aelospace Coating and TDA enective April 1, 2004 and amended April 1, 2014

Sorbent Based Post-Combustion CO₂ Slipstream Testing

Dr. Jeannine Elliott and Dr. Fei Yi

August 22, 2017

TDA Research Inc. | Wheat Ridge, CO 80033 | www.tda.com

Project Objectives

- The objective is to develop solid sorbent capture technology that captures CO₂ at less than \$40 per tonne without TS&M
- Demonstrate TDA's sorbent technology under realistic conditions at 0.5 MW_e (~10 tpd) scale to collect data necessary for scale up to next level plant
- Major Project Tasks
 - Design, construction, and operation of slipstream test unit to capture CO₂ from flue gas at the National Carbon Capture Center (NCCC)
- Successful project completion will move the technology along the commercialization road map towards slipstream demonstrations and multi MW installations by 2020-2025

TDA CO₂ Capture on Supercritical 550 MW plant

TDA's Approach

DoE Project # DE-FE0012870

TDA Research has developed:

 A low-cost, solid alkalized alumina adsorbent

- A CO₂ capture process designed specifically for this sorbent
- Multiple patents on the process

A unique CO₂ capture process using low cost sorbent to run adsorption and regeneration at near isothermal conditions

Flue gas Regeneration outlet 1 atm, ~130 to 140C With CO₂

Advantages over moving bed

- Moving bed had expensive conveyors, although the beds would be smaller
- Selected multiple fixed bed design
 - ✓ Basic duct work
 - ✓ Low cost construction
 - ✓ Simple bed design
 - ✓ Eliminates power lost when moving the sorbent
- Lower overall cost than moving beds

Project Scope

DoE Project DE-FE0012870 Funding - Total Project \$6,480,377

- Budget Period 1: Optimization & Design
 - April 2014 to February 2016
- Budget Period 2: Construction & Installation
 - March 2016 to October 2017
- Budget Period 3: Operation
 - November 2017 to January 2019

Budget Period 2 Tasks

-Task 6. Sorbent Production Scale-up and Quality Assurance

- Scale-up production of the sorbent
- Two producers had competitive prices for sorbent production
- Sorbent is alkalized alumina
- Sorbent QA/QC testing at TDA in bench-scale unit
- Sorbent tested under proposed test conditions
- Evaluation of optimum steady state conditions

Task 7. Procurement of Components and Fabrication of Units

- Construction of three skid-mounted units
- Fabricator constructing skid structure, manifolds and beds on two sorbent trailers, and service unit
- Instrument unit built at TDA
- Beds fabrication will be inspected prior shipment, control system shakedown on cold system, FAT testing

Budget Period 2 Tasks

- Task 8. Finalize Test Plan

- Operating conditions and key parameter parametric conditions selected
- Operator training

- Task 9. Pilot Plant Installation at NCCC

- Units transported to NCCC
- Skid Units installed

Manufacturer for the Sorbent

- ✓ Leading supplier of activated alumina products
- ✓ Over 35 years of experience in catalyst and sorbent manufacturing
- ✓ Over 15 years of toll processing experience
- ✓ Facilities in North America, Europe, and Asia
- Capabilities include extrusion, ball forming, drying, impregnation, calcination, and milling

We have evaluated multiple materials produced for us by Porocel

Properties of the First Round Sorbents

Sorbent	Bulk density (g/cc)	BET surface area (m²/g)	BJH Adsorption Cumulative Pore Volume of pores (cm ³ /g)	Adsorption Average Pore Diameter (nm)
Sorbent-1 1/16"	0.81	113.0	0.27	9.4
Sorbent-2 1/16"	0.81	65.4	0.27	17
Sorbent-1 1/8"	0.79	88.1	0.25	11.4
Sorbent-2 1/8"	0.78	76.5	0.26	13.5
TDA Sorbent	0.62 - 0.75	80 -145	0.36-0.53	9-11

Sorbents Screened in Single Fixed Bed

- ✓ Single reactor can take up to 300 mL sorbent
- ✓ Automation control
- ✓ All sorbents evaluated for 100+ cycles

Single Bed Testing Results for the First Round Sorbents

The CO₂ loadings of first round of sorbents are a little lower than TDA-812 sorbent but kinetic all looked comparable in single bed testing

TDA Bench-Scale Test Apparatus

- ✓ Ten 400 cc Fix Bed Reactors
- ✓ Continuous Adsorption and Regeneration
- \checkmark Automation control

Bench-scale Testing Results for the First Round Sorbents

Date	Sorbent	Avg Bed Temps (°C)	CO ₂ Loading, wt%	%CO₂ Capture
8/10/16	TDA Sorbent	143.1	0.82	90.6%
4/10/17	Sorbent-1	144.7	0.38	79.1%
4/17/17	Sorbent-2	143.4	0.50	80.5%

The CO₂ capture rate for the first round of sorbents is lower under the same process conditions. We worked with Porocel to make second set of customized sorbents for further tests.

Properties of the Second Round Sorbents

Batch number	Bulk density (g/ml)	BET Surface Area (m²/g)	BJH Adsorption Cumulative Pore Volume of pores (cm ³ /g)	Adsorption Average Pore Diameter (nm)
Batch 1	0.728	84.3	0.214	10.15
Batch 2	0.709	79.2	0.333	16.76
Batch 3	0.727	82.4	0.356	17.3
TDA-Sorbent	0.6 – 0.75	80 -145	0.36-0.53	9-11

Single Bed Testing Results for the Second Round Sorbents

Date	Sorbent	Adsorption Time (min)	Regeneration Time (min)	CO ₂ loading (wt%)	+/-
5/22/17	Batch 1	8.3	8.3	1.22	0.05
5/24/17	Batch 2	8.2	8.2	1.21	0.05
5/25/17	Batch 3	8.4	8.3	0.95	0.02
3/2/17	TDA-812	7.1	7.1	1.14	0.02
2/27/17	Sorbent -2	9.0	9.0	0.93	0.02

The performance of Batch 1 and 2 is good relative to the benchmark TDA-812 sorbent and better than first round sorbents

Bench-scale Testing Results for Second Round Sorbents

Simulation of Case 12 (13.5% CO₂)

Date	Batch	Step Time (s)	Avg Bed Temps (°C)	CO ₂ loading (wt%)	% CO ₂ Capture
5/27/17	1	85	141.1	0.76	89.8%
6/6/17	2	80	142.0	0.75	89.8%

10.5% NCCC Feed Composition where Pilot Unit expected to operate

Date	Batch	Step Time (s)	Avg Bed Temps (°C)	CO ₂ loading (wt%)	% CO ₂ Capture
6/15/17	1	115	144.7	0.69	89.9%
6/7/17	2	95	141.5	0.57	90.7%

90% CO₂ Capture demonstrated in continuous process in bench-scale unit

Bench-Scale Testing Results for the Second Round Sorbents

Batch 1 used to study the effect transition step time for controlling CO₂ purity

Transition step time (s)	N ₂ %	CO ₂ %
0	7.09	92.91
5	5.87	94.13
10	3.06	96.94
20	2.74	97.26
30	0.43	99.57

The N₂ and CO₂ level measured by GC. 95% CO₂ purity can be achieved.

Pilot Unit System 0.5 MW Demonstration

2 Sorbent Bed Trailers

- Sorbent trailers house 10 sorbent beds and manifold piping
- Each trailer is insulated and heated to provide an isothermal environment

Service Unit/Instrument Trailer

- Pressure, temperature and flow control for process gases
- Each process gas routed to both sorbent bed trailers
- Houses the control system and all electrical components for power allocation
- A full suite of on-board analyzers to evaluate system performance

Pilot Unit Skids

• Sorbent Trailers and Gas conditioning units are being fabricated by Spring Fabrication, Inc. (200,000 sq ft facility, 220 employees) in Colorado Springs.

• Instrument control unit was fabricated at TDA.

12/9/2016

12/9/2016

12/9/2016

12/9/2016

Sorbent Trailers

2/28/2017

5/2/2017

5/8/2017

5/30/2017

6/14/2017

6/22/2017

8/17/2017

8/17/2017

8/17/2017

Service Unit

The instrument and control cabinets made by TDA

Power panel

Instrument Unit/ Electronics Cabinet

Collaboration with NCCC before the Delivery of Skids

TDA is committed to comply all the safety requirements from NCCC. We had continuous discussion with NCCC and provided the following items:

- The skid lifting and rigging plan issued by AL PE
- Structural review issued by AL PE
- Foundation drawing issued by AI PE
- The sorbent loading plan
- The type of pre-made electrical connectors which will be re-connected at NCCC

Additionally, TDA has sent NCCC the skid drawings, 3-D model, P&ID, electrical diagram, operating procedure, interlock table and AL PE documents.

Lift plan

Pilot Unit Testing Schedule

- October 2017: Skid Installation at NCCC
- November December 2017: Integration/Shakedown
- March July 2018: Pilot Unit Operation
 - Parametric testing
 - Steady state testing

National Carbon Capture Center located at the E.C. Gaston power plant (Wilsonville, Alabama)

Summary

- Pilot-Unit engineering completed. We have coordinated with NCCC on requirements for stamped engineering drawings and information required on the skid.
- Two round of sorbents samples were produced at Porocel. The second round of sorbents performed better in QA/QC testing at TDA. The test results for Batches 1 and 2 of the second round are very promising and close to the benchmark TDA sorbent.
- Sorbent production order for pilot unit was placed. Sorbent will be produced in Little Rock, Arkansas by Porocel.
- Pilot Unit construction is nearly complete. Construction of two sorbent trailers, instrument unit, and electrical control cabinet is finished. The fabrication of third service unit skid is partially complete.
- FAT testing will be conducted in late September/ early October. The skids to be delivered to NCCC in mid-October.

Acknowledgements

- Project funding provided under DoE Contract # DE-FE0012870
- Andy O'Palko
- Lynn Brickett

